Behavioural pattern identification and prediction in intelligent environments

نویسندگان

  • Sawsan M. Mahmoud
  • Ahmad Lotfi
  • Caroline S. Langensiepen
چکیده

In this paper, the application of soft computing techniques in prediction of an occupant’s behaviour in an inhabited intelligent environment is addressed. In this research, daily activities of elderly people who live in their own homes suffering from dementia are studied. Occupancy sensors are used to extract the movement patterns of the occupant. The occupancy data is then converted into temporal sequences of activities which are eventually used to predict the occupant behaviour. To build the prediction model, different dynamic recurrent neural networks are investigated. Recurrent neural networks have shown a great ability in finding the temporal relationships of input patterns. The experimental results show that non-linear autoregressive network with exogenous inputs model correctly extracts the long term prediction patterns of the occupant and outperformed the Elman network. The results presented here are validated using data generated from a simulator and real environments.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sensor-based Occupancy Behavioral Pattern Recognition for Energy and Comfort Management in Intelligent Buildings

There has been extensive research focusing on developing smart environments by integrating data mining techniques into environments that are equipped with sensors and actuators. The ultimate goal is to reduce the energy consumption in buildings while maintaining a maximum comfort level for occupants. However, there are few studies successfully demonstrating energy savings from occupancy behavio...

متن کامل

Occupancy monitoring and prediction in ambient intelligent environment

Occupancy monitoring and prediction as an influential factor in the extraction of occupants' behavioural patterns for the realisation of ambient intelligent environments is addressed in this research. The proposed occupancy monitoring technique uses occupancy detection sensors with unobtrusive features to monitor occupancy in the environment. Initially the occupancy detection is conducted for a...

متن کامل

Intelligent application for Heart disease detection using Hybrid Optimization algorithm

Prediction of heart disease is very important because it is one of the causes of death around the world. Moreover, heart disease prediction in the early stage plays a main role in the treatment and recovery disease and reduces costs of diagnosis disease and side effects it. Machine learning algorithms are able to identify an effective pattern for diagnosis and treatment of the disease and ident...

متن کامل

A Novel Biometric Identification Based on a User’s Input Pattern Analysis for Intelligent Mobile Devices

As intelligent mobile devices become more popular, security threats targeting them are increasing. The resource constraints of mobile devices, such as battery life and computing power, however, make it harder to handle such threats effectively. The existing physical and behavioural biometric identification methods ‐ looked upon as good alternatives ‐ a...

متن کامل

Flow Pattern Identification and Pressure Drop Calculation for Gas-Liquid Flow in a Horizontal Pipeline

Two phase gas-liquid flow pattern in a horizontal pipeline is predicted very accurately using a newly-developed analytical relation. The pattern identification is based on one of the most widely used graphs, the Baker diagram, modified in a way that compensates for the unrealistic oversimplifications of recent works. The Kern's method of pressure drop calculation is used to obtain the frict...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Appl. Soft Comput.

دوره 13  شماره 

صفحات  -

تاریخ انتشار 2013